Tuesday, May 8, 2018

41. CHONXstix



Welcome to CHONXstix
Are you a Chemistry teacher?

CHONXstix makes learning and teaching chemistry fun, and enjoyable. CHONXstix  helps your students get higher grades.

Please request your FREE trial version of CHONXstix. Just message me a verifiable school address and I will send you a SAMPLE kit to try and keep without any obligation. You will see for yourself the power of CHONXstix for teaching and learning chemistry.

Sind Sie Chemielehrer?

Bitte fordern Sie Ihre KOSTENLOSE Testversion von CHONXstix an. Schicken Sie mir einfach eine überprüfbare Schuladresse und ich schicke Ihnen ein MUSTER-Set, das Sie unverbindlich aufbewahren können. Sie werden die Kraft von CHONXstix für das Lehren und Lernen von Chemie erleben.


Êtes-vous un professeur de chimie ?

S'il vous plaît demander votre version d'essai gratuite de CHONXstix. Envoyez-moi simplement une adresse vérifiable de l’école et je vous enverrai un kit d’échantillonnage pour essayer de le garder sans aucune obligation. Vous verrez vous-même la puissance de CHONXstix pour enseigner et apprendre la chimie.


Molecule modelling kits are an excellent learning/teaching aid. They are as well a powerful study aid giving the student a hands-on experience in learning.. Kits available on the market are not only very expensive, but they are also limited in the molecules and crystal structures they build to usually just one molecule per kit, each packaged in a box.
To overcome these shortcomings, CHONXstix are designed to be:
  • economical, light, and packaged in an envelop for convenient shipping and carrying so that they are always in your school-bag. 
  • easy and fun to assemble and disassemble molecules to model chemical processes for "hands-on" learning experience. 
  • connecting tubes ensure stable structures of any molecule, no matter how big, that can be rotated in the hands. 
  • models hydrogen bonds to show how water sticks together to form drops and becomes less dense when it solidifies into ice. 
  • models polymers showing you how acids and alcohols are chained to form polyester. 
  • models large graphite and graphene  sheets that are easy to handle. 
  • makes cubic and hexagonal diamond structures where the cube, tetrahedron and octahedron are color coded to clearly show them within the diamond. 
  • includes free internet resources for CHONXSTIX with many examples and pictures.
„Modell-Kits für Molekülen“(„Molecule Modeling Kits“) sind ein hervorragendes Lehrmittel. Sie sind auch eine leistungsfähige Lernhilfe, die den Lernenden eine praktische Lern-Erfahrung gibt. Diese Kits, die auf dem Markt verfügbar sind, sind nicht nur sehr teuer, aber begrenzen sich auch in den Molekülen und Kristallstrukturen, die Ihnen ermöglicht ein Molekül pro Kit, das jeweils in einer Box verpackt ist, zu erschaffen. 

Um diese Nachteile zu überwinden, wurde CHONXstix entwickelt:
  • sparsam, leicht und in einem Umschlag verpackt für den bequemen Versand und Transport, so dass sie immer in Ihrer Schultasche sind.
  • einfach und es macht Spaß Moleküle zu montieren und abzumontieren, um chemische Prozesse für "praktische" Lernerfahrungen zu modellieren.
  • verbindungsröhren sorgen für stabile Strukturen jedes Moleküls, egal wie groß, was in den Händen gereinigt werden kann.
  • modelliert Wasserstoffbrücken, die zeigen, wie Wasser zusammenklebt um Tropfen zu erzeugen und beim Erstarren zu Eis weniger dicht wird.
  • modelliert Polymere, die zeigen, wie Säuren und Alkohole zu Polyester verknüpft werden.
  • große modellierte Graphitfolien, die einfach zu handhaben sind.
  • macht kubische und hexagonale Diamantstrukturen, bei denen der Kubus, das Tetraeder und das Oktaeder farbcodiert sind, um sie deutlich innerhalb des Diamanten zu zeigen.
  • Das Diamantmodell ist ausreichend groß, um in den Händen gedreht zu werden, um zu "sehen", warum der Diamant so hart ist, warum er die optischen Eigenschaften hat und wie er durch Schichten von Graphitschichten gebildet wird.
  • enthält kostenlose Internet-Ressourcen für CHONXSTIX mit vielen Beispielen und Bildern.
Les kits de modélisation de molécules sont un excellent outil pédagogique. Ils sont aussi un puissant outil d'étude qui donne à l'étudiant une expérience pratique de l'apprentissage. Les kits disponibles sur le marché sont non seulement très chers, mais ils sont également limités dans les molécules et les structures cristallines, vu qu'ils construisent habituellement juste une molécule par kit, chacun emballé dans une boîte.

Pour surmonter ces lacunes, CHONXstix est conçu pour être:


  • économique, léger et emballé dans une enveloppe pour faciliter l'expédition et le transport afin qu'ils soient toujours dans votre sac d'école.
  • facile et amusant pendant l’assemblage et le démontage des molécules pour modéliser des processus chimiques. Tout dans le but d’avoir une expérience d'apprentissage «pratique».
  • Les tubes de connexion garantissent la stabilité des structures de n'importe quelle molécule, quelle que soit sa taille, afin qu’ils soient modélisés dans les mains.
  • modélise les liaisons hydrogène pour montrer comment l'eau colle pour former des gouttes et devient moins dense lorsqu'elle se solidifie en glace.
  • modélise des polymères qui vous montrent comment les acides et les alcools sont enchaînés pour former du polyester.
  • modélise de grandes feuilles de graphite faciles à manipuler.
  • crée des structures cubiques et hexagonales en diamant où le cube, le tétraèdre et l'octaèdre sont codés par couleur pour les montrer clairement dans le diamant.
  • Le modèle en diamant est suffisamment grand pour être tourné dans les mains pour « voir» pourquoi le diamant est aussi dur qu'il l'est, pourquoi il a les propriétés optiques qu'il a, et comment il est formé par des couches de feuilles de graphite.
  • inclut des ressources Internet gratuites pour CHONXSTIX avec de nombreux exemples et images.
Shapes and colors are used to differentiate the various atoms and to show how they bond with other atoms.

Rather than the traditional "ball and stick" approach, CHONXstix presents a “skeletal” view that clearly shows the inside of the molecules and better shows the bonds within it. As an additional benefit, the ”skeletal” form of molecules more readily resemble life forms and make it easier to put "faces" on the molecules for remembering them better.

Die „Modell-Kits für Molekülen“ von CHONXstix verwenden Scheibenmagnete, um kleine Moleküle herzustellen oder periphere Atome mit größeren Molekülen zu verbinden. Verbindungsschläuche werden für größere Moleküle verwendet, so dass sie stabil in der Handhabung sind. 

Formen und Farben werden verwendet, um die verschiedenen Atome zu unterscheiden und um zu zeigen, wie sie sich mit anderen Atomen verbinden. 

Anstelle des traditionellen "Ball and Stick" -Ansatzes präsentiert CHONXstix eine "skelettartige" Ansicht, die das Innere der Moleküle deutlich zeigt und die Bindungen darin besser zeigt. Als zusätzlichen Vorteil ähnelt die "skelettartige" Form von Molekülen leichter Lebensformen und macht es einfacher, "Gesichter" auf die Moleküle zu setzen, um sie besser in deren Erinnerung zu schaffen.

Le kit de modélisation moléculaire de CHONXstix utilise des aimants à disque pour fabriquer de petites molécules ou relier des atomes périphériques à des molécules plus grosses. Les tubes de connexion sont utilisés pour des molécules plus grosses, de sorte qu'ils sont stables à manipuler. 

Les formes et les couleurs sont utilisées pour différencier les différents atomes et montrer comment ils se lient avec d'autres atomes. 

Plutôt que l'approche traditionnelle "boule et bâton", CHONXstix présente une vue "squelettique" qui montre clairement l'intérieur des molécules et montre mieux les liens à l'intérieur. Comme avantage supplémentaire, la forme « squelettique» des molécules ressemble plus facilement aux formes de vie et facilite la mise en place de «visages» sur les molécules pour mieux les mémoriser.


FREE CHONXstix SAMPLE KIT

Instructions;
Connect 2 black pieces back-back to make the carbon atom.
Now you are ready to burn methane and make some salt.
Jetzt sind Sie bereit, Methan zu verbrennen und etwas Salz zu machen.
Maintenant vous êtes prêt à brûler du méthane et à faire du sel.

The FREE CHONXstix SAMPLE KIT allows you to model the following chemical processes.
Mit dem FREE CHONXstix SAMPLE KIT können Sie die folgenden chemischen Prozesse modellieren. 
Le kit d’échantillonnage gratuit CHONXstix Vous permet de modéliser les processus chimiques suivants. 

1. Burning of Methane


CH4 + 2(O2) --> CO2 + 2(H2O)  
CO2
O2
 CO2
H2O

2. Formation of table salt.

HCl + NaOH --> NaCl + H2O
 HCl
 NaOH
NaCl
H2O

Now, do you want to make some sugar? or TNT?

To fully appreciate the power of CHONXstix as a chemistry teaching/study tool, you can order for your school and for your students complete kits described at www.

Wollen Sie jetzt etwas Zucker machen?

Um die Kraft von CHONXstix als Chemie-Lehrmittel zu schätzen, können Sie für Ihre Schule und für Ihre Schüler komplette Kits bestellen: unter www.

Maintenant, voulez-vous faire du sucre ?

Pour apprécier pleinement la puissance de CHONXstix en tant qu'outil d'enseignement / étude de chimie, vous pouvez commander pour votre école et pour vos élèves des kits complets décrits sur www.
CHONXstix Kit 1 for molecules


Kit 1 has
  • 6 black Carbon atoms, 
  • 18 red Oxygen atoms, 
  • 4 blue Nitrogen atoms, 
  • 18 white hydrogens atoms, 
  • 1 blue metal atom, 
  • 1 yellow chalogen atom, 
  • xx grey double bonds.
  • xx tranparent connecting tubes for single bonds.
The CO2 / H2O cycle can be modeled with the following chemical processes. 
  • plants photosynthesizing sugar from CO2 and H2O. 
  • animals fermenting sugar into alcohols. 
  • alcohols oxidizing into acids. 
  • acids breaking into CO2 and H2O. 
  • any molecules with up to 6C, 12H, 18O and 4N atoms can be modeled. As an example you can model how nature makes fats, how man makes soap, and how scientists make bombs and drugs. 
  • hydrogen bonds
  • DNA 

CHONXstix Kit 1 für Molekülen
Kit 1 hat
  • 6 schwarze Kohlenstoffatome, 
  • 18 rote Sauerstoffatome. and 
  • 4 blaue Stickstoffatome. 
  • Andere Atome werden von magnetischen bällen repräsentiert. 
  • 18 Wasserstoffe sind silber, 
  • 1 metal ist blau and 
  • 1 Chalkogen ist grün. 
  • 12 schwarze magnetische Bälle werden für doppelbindungen verwendet. 
  • 18 Scheibenmagnete werden für einzelne kovalent-Verbindungen zwischen unpaarige Elektronen verwendet. 
Der CO2 / H2O Zyklus kann mit dem folgenden chemischen Prozesse modelliert werden. 

• Pflanzen-Photosynthese von Zucker aus CO2 und H2O.
• Tiere vergären Zucker zu Alkohol.
• Alkohole, die zu Säuren oxidieren.
• Säuren, die in CO2 und H2O einbrechen.
• Moleküle mit bis zu 6C-, 12H-, 18O- und 4N-Atomen können modelliert werden. Als Beispiel können Sie modellieren, wie die Natur Fette herstellt, wie der Mensch Seife herstellt und wie Wissenschaftler Bomben und Drogen herstellen.
°Wasserstoffbrücken


Kit moléculaire 1 CHONXstix

Le kit 1 a

  • 6 atomes de carbone noirs, 
  • 18 atomes d'oxygène rouges, et 
  • 4 atomes d'azote bleus. 
  • Les autres atomes sont représentés par des billes magnétiques. 
  • 18 hydrogènes sont en argent, 
  • 1 métal est bleu et 
  • 1 Chalogène est vert. 
  • 12 boules d'aimant noires sont utilisées pour faire des doubles liaisons. 
  • 18 aimants de disque sont utilisés pour créer des liaisons covalentes simples entre des électrons non appariés. 
Le cycle CO2 / H2O peut être modélisé avec les processus chimiques suivants.
• plante le sucre photo-synthétisant du CO2 et de l'eau.
• les animaux fermentent le sucre en alcools.
• les alcools s'oxydant en acides.
• les acides se brisant en CO2 et en H2O.
• Toutes les molécules ayant des atomes allant jusqu'à 6C, 12H, 18O et 4N peuvent être modélisées. À titre d'exemple, vous pouvez modéliser comment la nature fabrique les graisses, comment l'homme fabrique du savon et comment les scientifiques fabriquent des bombes et des drogues.
*liaisons hydrogène.



Assembling the atoms.

A tool is included in the kit to make the assembly of the atoms easier and more precise.

To make the Carbon atoms, place a black piece in the tool to hold it and 


position a second black piece as shown below and press down until the pieces "click" together. 

To make the Nitrogen atom, place the small blue piece in the tool and position the large blue piece on top, press till they "click" together.


Molecules in the air 

With Kit 1, you can make any molecules that have up to 6C, 12H, 18O and 4N atoms.
Mit Kit 1 können Sie beliebige Moleküle mit bis zu 6C-, 12H-, 18O- und 4N-Atomen herstellen.
Avec le Kit 1, vous pouvez fabriquer n'importe quelle molécule ayant jusqu'à 6C, 12H, 18O et 4N atomes.
N2
O2
H2O
CO2
CH4
 O3

O3


Photosynthesis

Photosynthesis is the formation of sugars by plants from CO2 and H2O with the aid of light.
Photosynthese ist die Zuckerbildung von Pflanzen aus CO2 und H2O mit Hilfe des Lichts.
La photosynthèse est la formation de sucres par les plantes à partir de CO2 et de H2O à l'aide de la lumière.
CO2
H2O
LIGHT
C6H12O6
O2

Oxygen

Oxygen is a very reactive atom. It is found in the stable form when it couples with another oxygen atom with a double bond to form the O2 molecule found in the atmosphere. When cosmic rays hit O2, it breaks it apart into its constituent 2 oxygen atoms that find themselves alone desperately looking to mate with O2 molecules to make Ozone (O3). The single oxygen atoms grab on to the middle part of O2 molecules (the only place they can "hold on") and repeatedly try to mate. As they succeed, the double bond between the original 2 oxygen atoms momentarily break to allow the new comer to mate. But not for long. The cycle repeats in resonance.

There are other resonating molecule involving oxygen. Nitrous oxide (NO2) known as laughing gas also resonates as it tries to mate with the middle nitrogen atom. 

Oxidation

When oxygen breaks apart organic molecules, either slowly and controlled, or quickly and uncontrollably as in fire "steals" electron from the substances that are burned by simply turning them free and dispersing them in the atmosphere. The simplest example of an organic molecule being oxidized is the burning of methane.
Methane (CH4) 
O2
CO2
H2O


                                             Hydrocarbons
hydrocarbon is an organic compound consisting entirely of hydrogen and carbon.
Aromatic hydrocarbons (arenes), alkanescycloalkanes and alkyne-based compounds are different types of hydrocarbons.
Most hydrocarbons found on Earth naturally occur in crude oil, where decomposed organic matter provides an abundance of carbon and hydrogen which, when bonded, can catenate to form seemingly limitless chains. The short chains form gases, longer chains form liquids and even longer chains form solids.
Extracted hydrocarbons in a liquid form are referred to as petroleum or mineral oil, whereas hydrocarbons in a gaseous form are referred to as natural gas. Petroleum and natural gas are found in the Earth's subsurface and are a significant source of fuel and raw materials for the production of organic chemicals
While hydrocarbons fuel machines, carbohydrates fuel animals.




Carbohydrates


By adding oxygen to hydrocarbons in the form of H2O, .carbohydrates form. A carbohydrate is a hydrate of carbon consisting of C, H, O atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water). They include alcohols, aldehydes,  ketones, sugars (chain of alcohols), starches and cellulose (chain of sugars) and acids. 

Alcohol Alkohole alcools
When sugar is oxidized, it breaks down into alcohol. Just like grape juice turns into wine.
All Alcohols have one or more Alcohol "heads" on a hydrocarbon "tail".
Alle Alkohole haben einen oder mehrere Alkohol- "Köpfe" an einem Kohlenwasserstoff- "Schwanz".
Tous les alcools ont une ou plusieurs « têtes » d'alcool sur une «queue» d'hydrocarbure.


COH alcohol head

C-C-hydrocarbon "fatty tail".........(COH)

When alcohols are dehydrogenated by removing a hydrogen from their heads, the oxygen can now form a double bond producing Aldehydes (RCHO) and Ketones (R1COR2) are produced.

Aldehydes and Ketones are simple compounds that contain a carbonyl group (a carbon-oxygen double bond). They are considered "simple" because they do not have reactive groups like −OH or −Cl attached directly to the carbon atom in the carbonyl group, as in carboxylic acids containing −COOH.

Aldehydes

An aldehyde is an organic compound containing a functional group with the structure −CHO, consisting of a carbonyl center (a carbon double-bonded to oxygen) with the carbon atom also bonded to hydrogen and to an R group, which is any generic alkyl or side chain. Aldehydes are common in organic chemistry and many fragrances are aldehydes.

Ketones

A ketone is an organic compound with the structure RC(=O)R', where R and R' can be a variety of carbon-containing substituents. Many ketones are known and many are of great importance in industry and in biology. Ketones, like glucose (the sugar in blood) are used as fuel by cells including brain cells. Examples of ketones include many sugars and the industrial solvent acetone, which is the smallest ketone.



Sugar

Sugar is a soluble carbohydrates. The various types of sugar are derived from different sources. Simple sugars are called monosaccharides and include glucose (also known as dextrose), fructose, and galactose. "Table sugar" or "granulated sugar" refers to sucrose, a disaccharide of glucose and fructose. In the body, sucrose is hydrolysed into fructose and glucose.

Glucose is a simple sugar with the molecular formula C6H12O6Glucose is the most abundant monosaccharide, a subcategory of carbohydrates.Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using energy from sunlight.

Sugars have one or more "alcohol" heads (OH) and break down to alcohols.

Glucose
The ring form of glucose makes up more than 97% of the glucose molecules in a water solution.

Glukose in dessen Ringform macht mehr als 97% der Glucosemoleküle in einer Wasserlösung aus.
La forme cyclique du glucose constitue plus de 97% des molécules de glucose dans une solution aqueuse.

The straight chain form of glucose makes up less than 3% of the glucose molecules in a water solution
.
Die geradkettige Form von Glucose ergibt weniger als 3% der Glucosemoleküle in einer Wasserlösung aus.
La forme linéaire du glucose constitue moins de 3% des molécules de glucose dans une solution aqueuse.
                                                              



Starch and Cellulose
                              
Fermentation

Fermentation is the breaking down of sugars into alcohols and eventually into acids. Glucose breaks down into Ethanol which breaks down into acetic acid (vinigar)

Fermentation ist der Abbau von Zuckern zu Alkoholen und schließlich zu Säuren. Glucose zerfällt in Ethanol, das in Essigsäure (Essig) zerfällt.

La fermentation est la décomposition des sucres en alcools et éventuellement en acides. Le glucose se décompose en éthanol qui se décompose en acide acétique (vinaigre)

The more imagination you use, the better you will remember the molecules and the processes they are in. Once you form a bond with them and "play" with them in your hands like a child does to a doll or toy figure,then these molecules and processes will be automatically and painlessly engraved into your memory.

When you "break apart" the glucose, that resembles a "crab", it turns into 2 Ethanols that resemble dogs.

Je mehr Phantasie Sie verwenden, desto besser werden Sie sich an die Moleküle und die Prozesse erinnern, in denen sie sich befinden. Sobald Sie eine Verbindung mit denen bilden und mit ihnen in ihren Händen "spielst" wie ein Kind mit einer Puppe oder Spielzeugfigur, dann werden diese Moleküle und Prozesse automatisch und schmerzlos in Ihr Gedächtnis eingraviert. 

Wenn Sie die Glukose, die einer "Krabbe" ähnelt, "auseinanderbrechen", wird es zu 2 Ethanolen, die Hunden ähneln. 

Plus vous utiliserez d'imagination, mieux vous vous souviendrez des molécules et des processus dans lesquels ils se trouvent. Une fois que vous vous liez avec eux et jouez avec eux dans vos mains comme un enfant fait avec une poupée ou un jouet. Ces molécules et les processus seront alors gravés automatiquement et sans douleur dans votre mémoire.

Lorsque vous "cassez" le glucose, qui ressemble à un "crabe", il se transforme en 2 Ethanols qui ressemblent à des chiens. 

Glucose (C6H12O6) + Yeast ---> Ethenol 2(C2H2OH) + 2(CO2)
Sugar into wine

C6H12O6
C2H2OH
CO2







Acids Säure acides

When alcohols are oxidized, the become acids. Just like wine turns to vinegar.  
All Acids have one or more Acid "heads" on a hydrocarbon "tail".

Alle Säuren haben einen oder mehrere Säure- "Köpfe" an einem Kohlenwasserstoff- "Schwanz".

Tous les acides ont une ou plusieurs "têtes" acides sur une "queue" hydrocarbonée.




COOH acid head

C-C-hydrocarbon "fatty tail".........(COOH)

Alcohols oxidize into acid and water. Ethonol oxydizes into acetic acid and water.

As a memory aid, imagine the Ethanols that resemble dogs exchange 2 of their Hydrogens for one Oxygen. The Oxygen resembles a "bone". The newly formed acetic acid now resembles a "dog with a bone".

By actually breaking the molecules apart and reassembling them using hands and eyes, the learning experience is greatly increased.

Alkohole oxidieren zu Säure und Wasser. Ethanol oxidiert zu Essigsäure und Wasser.

Als Gedächtnishilfe stellen Sie sich vor, dass die Hunde ähnelnden Ethanole 2 ihrer Hydrogene gegen eines der Sauerstoffe ausgetauscht werden. Der Sauerstoff ähnelt einem "Knochen". Die neu gebildete Essigsäure ähnelt nun einem "Hund mit einem Knochen".

Indem man die Moleküle auseinanderbricht und sie mit Händen und Augen wieder zusammensetzt, wird die Lernerfahrung stark erhöht.


Les alcools s'oxydent en acide et en eau. L'éthanol s'oxyde en acide acétique et en eau.

En guise d'aide-mémoire, imaginez les éthanols qui ressemblent à des chiens qui échangent 2 de leurs

Hydrogènes pour un Oxygène. L'oxygène ressemble à un "os". L'acide acétique nouvellement formé ressemble maintenant à un "chien avec un os".

En brisant les molécules et en les réassemblant à l'aide des mains et des yeux, l'expérience d'apprentissage est grandement améliorée.




Ethanol + O2 ----> Acetic acid + H2O
Wine into vinegar

Ethanol
O2
Acetic acid
H2O


Organic acids, like all acids break apart into charged ions by losing their protons from their protruding and tightly held hydrogen atoms.

Can you visualize how the oxygen with the double bond holds the protruding hydrogen to the molecule?.

Acetic acid, like all organic molecules eventually oxidizes breaking apart into CO2 + H2O which plants use to make Glucose and Oxygen.

Essigsäure oxidiert schließlich zu CO2 + H2O, welches die Pflanzen zur Herstellung von Glucose und Sauerstoff verwenden.
L'acide acétique finit par s'oxyder en CO2 + H2O que les plantes utilisent pour produire du Glucose et de l'Oxygène.
Acetic acid
O2
CO2
H2O





Fats (Tri-glycerides) Triglycerid triglycéride

A triglyceride is an ester derived from glycerol and three fatty acids. Triglycerides are the main constituents of body fat in humans and other animals, as well as vegetable fat. They are also present in the blood to enable the bidirectional transference of adipose fat and blood glucose from the liver, and are a major component of human skin oils.

Ein Triglycerid ist ein Ester, der von Glycerin und drei Fettsäuren abgeleitet ist. Triglyceride sind die Hauptbestandteile des Körpers Fett in Menschen und anderen Tieren, sowie pflanzliches Fett. Sie sind auch im Blut vorhanden, um die bidirektionale Übertragung von Fettgewebe und Blutglucose aus der Leber zu ermöglichen, und sind ein Hauptbestandteil der Haut Öle des Menschen.

Un triglycéride est un ester dérivé du glycérol et de trois acides gras. Les triglycérides sont les principaux constituants du corps la graisse chez les humains et d'autres animaux, ainsi que la graisse végétale. Ils sont également présents dans le sang pour permettre le transfert bidirectionnel de la graisse adipeuse et de la glycémie du foie, et sont un composant majeur de l'homme. Huiles pour la peau.
To make Tri-glycerides,  take Glycerol
Um Triglyceride herzustellen, nehmen Sie das Glycerol
Pour faire des triglycérides, prenez du glycérol


And take 3 Fatty acids. Chains of C "tail" with acid heads. The hydrocarbon tail can be more than 20 carbons long and can be saturated (with only single bonds) or unsaturated (with double and/or triple bonds).
Und nehmen Sie 3 Fettsäuren. Fettsäuren sind Säureköpfe mit einem Kohlenwasserstoffschwanz. Der Schwanz kann länger als 20 Kohlenstoffatome werden und einfach gesättigt sein (mit nur Einfachbindungen) oder ungesättigt sein (mit Doppel- und / oder Dreifachbindungen).
Et prenez 3 acides gras. Les acides gras sont des acides avec une queue d'hydrocarbure. La queue peut avoir plus de 20 atomes de carbone et peut être saturée (avec seulement des liaisons simples) ou insaturée (avec des liaisons doubles et / ou triples).



The Glycerol loses its 3 OH heads, and the Fatty acid loses its H heart. The freed OH and H find each other to form H2O. The torn apart Glycerol pairs with 3 "broken hearted" Fatty acids to form various tri-glycerides, depending on their fatty acids.

Das Glycerol verliert seine 3 OH-Köpfe und die Fettsäure verliert ihr H-Herz. Die freigesetzten OH und H finden sich unter Bildung von H2O. Das auseinander gerissene Glycerol paart sich mit 3 Fettsäuren, die als "gebrochenen Herzen" dargestellt werden, um verschiedene Triglyceride zu bilden, abhängig von ihren Fettsäuren.
Le glycérol perd ses 3 têtes OH, et l'acide gras perd son cœur. Les OH et H libérés se trouvent l'un l'autre pour former H2O. Le Glycérol déchiré est associé à 3 acides gras « brisés» pour former divers triglycérides, en fonction de leurs acides gras.


Proteins
Proteins are large biomolecules, or macromolecules, consisting of one or more long chains of amino acids.  Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific three-dimensional structure that determines its activity.

A linear chain of amino acids is called a polypeptide. A protein contains at least one long polypeptide.

Many proteins are enzymes that catalyse biochemical reactions and are vital to metabolism. Proteins also have structural or mechanical functions which form a system of scaffolding that maintains cell shape. In animals, proteins are needed in the diet to provide the essential amino acids that cannot be synthesized. Digestion breaks the proteins down for use in the metabolism.

Amino acid

Amino acids are organic compounds containing amine (-NH2) and carboxyl (-COOH) functional groups (acid head), along with a side chain (R group) specific to each amino acid.


DNA / RNA

DNA (Deoxyribo Nucleic Acid) encodes all genetic information, and is the blueprint from which all biological life is created. DNA is a storage device that allows the blueprint of life to be passed between generations. RNA functions as the reader that decodes the DNA for making proteins. DNA codes for all proteins needed by humans using nucleobases G, A, C, T attached to a sugar based backbone. 

The nucleobases on the backbone are attached to each other via hydrogen bonds that can be easily broken as the backbone "unzips" to replicate. .As the DNA unzips to replicate, the nucleobases find their new partners, G with A and C with T to make an exact replica.
All proteins needed by humans are made from a code of the 4 nucleobases G,A, C, U attached to a sugar based backbone of RNA. As the DNA unzips for the RNA, the nucleobases pair, G with A and C with U on the RNA backbone. 
Base pairing: Two base pairs are produced by four nucleotide monomers, nucleobases are in blue. Guanine (G) is paired with cytosine (C) via three hydrogen bonds, in red. Adenine (A) is paired with uracil (U) via two hydrogen bonds, in red.

Five nucleobases—adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) function as the fundamental units of the genetic code, with the bases A, G, C, and T being found in DNA while A, G, C, and U are found in RNA. Thymine and uracil are identical excepting that T includes a methyl group that U lacks.
 


Structurally, DNA and RNA are nearly identical. There are three fundamental differences that account for the very different functions of the two molecules. 
Both DNA and RNA are built with a sugar backbone, but whereas the sugar in DNA is called deoxyribose (left in image), the sugar in RNA is called simply ribose (right in image). RNA has two hydroxyl (-OH) groups attached to its carbon backbone, DNA has only one, and has a lone hydrogen atom attached instead. RNA’s extra hydroxyl group proves useful in the process of converting genetic code into mRNAs that can be made into proteins, whilst the deoxyribose sugar gives DNA more stability.

DNA and RNA are responsible for the storage and reading of genetic information that underpins all life. They are both linear polymers, consisting of sugars, phosphates and bases, but there are some key differences which separate the two. These distinctions enable the two molecules to work together and fulfill their essential roles.

DNA replicates and stores genetic information. It is a blueprint for all genetic information contained within an organism. RNA converts the genetic information contained within DNA to a format used to build proteins, and then moves it to ribosomal protein factories.

DNA consists of two strands, arranged in a double helix. RNA only has one strand.
DNA backbone

Sugars connected by 
phosphor base holding nucleobase pairs 

G and C connected by 3 hydrogen bonds.
A and T connected by 2 hydrogen bonds.

Soaps Seife Savon

Tri-glycerides break apart in the presence of a strong base like Lye (NaOH). The freed Fatty acids lose their H hearts and the attacking NaOH bases breaks apart losing their OH heads. The OH heads and H hearts find each other to form water (H2O). The torn apart bases and the torn apart fatty acids pair up to form soaps.

The fatty acids with their hydrocarbon tails soluble in fats and oils now have metalic heads that are soluble in water. Like a mop the tails on the soap molecules are able to mop up oily dirt.

Triglyceride brechen in Gegenwart einer starken Base wie Laugen (NaOH) auseinander. Die freigesetzten Fettsäuren verlieren ihre H-Herzen und die angreifenden NaOH-Basen brechen unter Verlust ihrer OH-Köpfe auseinander. Die OH-Köpfe und H-Herzen finden sich gegenseitig, um Wasser (H2O) zu bilden. Die auseinandergerissenen Basen und die auseinandergerissenen Fettsäuren paaren sich zu Seifen zusammen.

Die Fettsäuren mit ihren in Fetten und Ölen löslichen Kohlenwasserstoffschwänzen haben jetzt Metallköpfe, die im Wasser lösbar sind. Wie ein Wischmopp können die Schwänze der Seifenmoleküle öligen Schmutz aufwischen.


Triglycérides se séparent en présence d'une base forte comme la lessive (NaOH). Les acides gras libérés perdent leurs cœurs H et les bases de NaOH attaquantes se désintègrent en perdant leurs têtes OH. Les têtes OH et les cœurs H se trouvent l'un l'autre pour former de l'eau (H2O). Les bases déchirées et les acides gras déchirés s'unissent pour former des savons.

Les acides gras avec leurs queues d'hydrocarbures solubles dans les graisses et les huiles ont maintenant des têtes métalliques solubles dans l'eau. Comme une vadrouille, les queues sur les molécules de savon sont capables d'éponger la saleté huileuse.


Ammonia


Ammonia is a compound of nitrogen and hydrogen with the formula NH3. Ammonia is a colorless gas with a distinct characteristic of a pungent smell. It is a common nitrogenous waste, particularly among aquatic organisms, and it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. Ammonia is also a building block for the synthesis of many pharmaceutical products and is used in many commercial cleaning products.

Although common in nature and in wide use, ammonia is both caustic and hazardous in its concentrated form. 


 Urea

Urea is an organic compound with chemical formula CO(NH2)2. Two –NH2 groups joined by a carbonyl (C=O) functional group.

Urea serves an important role in the metabolism of nitrogen-containing compounds by animals and is the main nitrogen-containing substance in the urine of mammals. It is a colorless, odorless solid, highly soluble in water, and non-toxic. Dissolved in water, it is neither acidic nor alkaline. The body uses it in many processes, most notably nitrogen excretion. The liver forms it by combining two ammonia molecules (NH3) with a carbon dioxide (CO2) molecule in the urea cycle. Urea is widely used in fertilizers as a source of nitrogen (N) and is an important raw material for the chemical industry.

Friedrich Wöhler discovered that urea can be produced from inorganic starting materials was an important conceptual milestone in chemistry in 1828. It showed for the first time that a substance previously known only as a byproduct of life could be synthesized in the laboratory without biological starting materials, thereby contradicting the widely held doctrine of vitalism, which stated that only living things could produce the chemicals of life.


Nitroglycerin 
Glycerol + Nitric acid -> Nitroglycerin
Glycerin + Salpetersäure -> Nitroglycerin
Glycérol + acide nitrique -> Nitroglycérine



Glycerol
Nitric acid

Just as with Esters, alcohols pair with acids. Alcohols lose their OH heads and the acids lose their H hearts. The freed OH and H find each other to form H2O. The torn apart alcohols and acids pair up to form a very strong material. If the acid is carbon based, then the materials can be as tough as polyesters like the bullet-proof Kevlar.. If the acids are nitrogen based, then the materials can be as explosive as Nitroglycerin.

Genau wie bei Ester, paaren sich Alkoholen mit Säuren. Alkohole verlieren ihre OH-Köpfe und die Säuren verlieren ihre H-Herzen. Die freigesetzten OH und H finden sich unter Bildung von H2O. Die auseinandergerissenen Alkohole und Säuren bilden ein sehr starkes Material. Wenn die Säure auf Kohlenstoff basiert, können die Materialien so hart wie Polyester und kugelsichere Kevlar werden… Falls die Säuren stickstoffbasiert sind, können die Materialien genauso explosiv wie Nitroglycerin sein.
Tout comme avec Esters, les alcools s'accouplent avec les acides. Les alcools perdent leurs têtes OH et les acides perdent leurs cœurs H. Les OH et H libérés se trouvent l'un l'autre pour former H2O. Les alcools déchirés et les acides s'associent pour former un matériau très résistant. Si l'acide est à base de carbone, alors les matériaux peuvent être aussi durs que les polyesters comme le Kevlar pare-balles. Les acides sont à base d'azote, alors les matériaux peuvent être aussi explosifs que la nitroglycérine. 
water byproduct
Nebenprodukt Wasser
Des sous-produits de l'eau


TNT
Toluene + Nitric acid -> TNT
Toluol + Salpetersäure -> TNT
Toluène + acide nitrique -> TNT

TNT is more resistant to accidental shocks than Nitroglycerin. Can you see why this is so from looking at the molecular structure?

TNT ist beständiger gegen zufällige Stöße als Nitroglycerin. Können Sie sehen, warum dies so ist, wenn man die molekulare Struktur betrachtet?

TNT est plus résistant aux chocs accidentels que la nitroglycérine. Pouvez-vous voir pourquoi il en est ainsi en regardant la structure moléculaire ?

Toluene 
Toluene (Benzene with a CH3 head) also known as methylbenzene is an aromatic hydrocarbon. It is a colorless, water-insoluble liquid with the smell associated with paint thinners. Toluene is predominantly used as an industrial feedstock and a solvent. It is used as a recreational inhalant and has the potential of causing severe neurological harm.
and Nitric acid.
results in TNT
Toluol und Salpetersäure. Ergebnisse in TNT
Toluène Et l'acide nitrique. Des résultats en TNT
   
Can you guess what the byproduct is?
If you model the making of TNT, then you can check your answer.

Können Sie raten, was das Nebenprodukt ist?
Wenn Sie die Herstellung von TNT modellieren, können Sie Ihre Antwort überprüfen.


Pouvez-vous deviner ce qu’est le sous-produit ?
Si vous modélisez la fabrication de TNT, vous pouvez vérifier votre réponse.


Toxins Toxine Toxines

Hydrogen cyanide (HCN) is an extremely poisonous liquid used in the production of pharmaceuticals, fibers, polymers, rubbers and plastics.

Sodium cyanide (NaCN) is used in gold mining because of its high affinity for gold.

HCN + NaOH -> NaCN + H2O

Cyanwasserstoff (HCN) ist eine extrem giftige Flüssigkeit, die bei der Herstellung von Pharmazeutika, Fasern, Polymeren, Kautschuken und Kunststoffen verwendet wird. 

Natriumcyanid (NaCN) wird wegen seiner hohen Affinität zu Gold im Goldbergbau verwendet. 

Le cyanure d'hydrogène (HCN) est un liquide extrêmement toxique utilisé dans la production de produits pharmaceutiques, de fibres, de polymères, de caoutchoucs et de plastiques. 

Le cyanure de sodium (NaCN) est utilisé dans l'extraction de l'or en raison de sa forte affinité pour l'or. 



Hydrogen bonds

Steam, Water and Ice
Water molecules that are slowed down sufficiently to become liquid cling on to each other using the bonds called "hydrogen bonds" forming strings.

The 2 hydrogens in water have their positive charged protons on both sides of oxygen sticking out polerizing the molecule. This causes oxygen to be a bit negatively charged. The positively charged ends of the water molecule are attracted to the negatively charged oxygens. The water molecules cling to each other.
6 molecules of H2O as steam.
 6 molecules of H2O as water making strings using the hydrogen bonds.
 6 molecules of H2O as ice, The strings of water as they move more slowly form loops.
QUESTION
By knowing the following:
  1. the force of  the hydrogen bond, 
  2. the force of gravity, 
  3. the length of the water molecule, and 
  4. the weight of the water molecule, 

what is the deepest well that water can be drawn up with a vacuum pump? 

HINT. Knowing the force of the hydrogen bond and the force of gravity, find out how much weight a hydrogen bond can hold under gravity. Knowing the weight of each water molecule, find out how many water molecules the weight corresponds to. Knowing the size of each water molecule, find out how long a line they form when they are end to end.
Water molecules are mostly found in its gas form as water vapor, or its solid form as ice. The liquid form only manifests in the relative narrow range between 0°C and 100°C found on the surface when the atoms are slowed down enough to start to form hydrogen bonds with each other. When they move a bit slower still, they attach together to form structures seen in snow and ice.

Like 2 dancers that start dancing apart and catch on to each other and soon end up still and clinging in each others arms. 

Strings of water molecules as seen in water take up less room than loops of water molecules as seen in ice making ice less dense than water. You can now clearly see why water, unlike other molecules, floats as it solidifies into ice.

Carbon rings


Cyclohexane (C6H12) is a colorless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products in which it is sometimes used. It is not found in nature but produced by hydrogenation of benzene. It is mainly used for the industrial production of nylon.

Benzene (C6H6) with its double bonds is an aromatic hydrocarbon is natural constituent of crude oil and is one of the elementary petrochemicals. It is a colorless and highly flammable liquid with a sweet smell, and is responsible for the aroma around petrol (gas) stations. As benzene has a high octane number. An octane rating, or octane number, is a standard measure of the performance of an engine or aviation fuel. The higher the octane number, the more compression the fuel can withstand before detonating (igniting). In broad terms, fuels with a higher octane rating are used in high performance gasoline engines that require higher compression ratios. In contrast, fuels with lower octane numbers are ideal for diesel engines, because diesel engines do not compress the fuel, but rather compress only air and then inject fuel into the air which was heated by compression. 





Graphite Graphit Graphite

Graphite is sheets of carbon atoms where each sheet is made from interconnected hexagon cells each made from 6 atoms. Each hexagon cell is shaped like a bent folding chair on 3 legs. The cell extends out into a flat sheet. None of the atoms are aligned with any of their neighbor atoms.

Graphit ist eine Schicht aus Kohlenstoffatomen, wobei jede Schicht aus miteinander verbundenen sechseckigen Zellen besteht, die jeweils aus 6 Atomen bestehen. Jede sechseckige Zelle ist wie ein gebogener Klappstuhl auf 3 Beinen geformt. Die Zelle erstreckt sich in ein flaches Blatt. Keines der Atome ist mit irgendeinem ihrer Nachbaratome ausgerichtet.

Le graphite est des feuilles d'atomes de carbone où chaque feuille est faite à partir de cellules hexagonales interconnectées, chacune composée de 6 atomes. Chaque cellule hexagonale a la forme d'une chaise pliante pliée sur 3 pieds. La cellule s'étend dans une feuille plate. Aucun des atomes n'est aligné avec l'un de leurs atomes voisins.




Graphene

Graphene is a single atomic plane of graphite, which is sufficiently isolated from its environment to be considered free-standing. It is a semi-metal. It can be considered as an indefinitely large aromatic molecule, the ultimate case of the family of flat polycyclic aromatic hydrocarbons. 
Graphene has many uncommon properties. It is the strongest material ever tested, conducts heat and electricity efficiently, and is nearly transparent. 

The graphite sheet (without double bonds) and graphene sheet (with double bonds) occupy the same volume. The single bonds on each side of the graphite sheets that allow them to layer into graphite and diamond  have been forced to "close" and make a double bonds. 

QUESTION:


Why is a 6-carbon ring with 2 double bonds (like in graphene) not "squeezed" tighter together and thus form a smaller ring than a 6-carbon ring with just single bonds (like in graphite)? 











Polycyclic aromatic hydrocarbons (PAHs) account for a significant percentage of all carbon in the universe. They are hydrocarbons that are composed of multiple carbon rings with double bonds. .PAHs are non-polar molecules found in coal and in tar deposits. They are also produced by the thermal decomposition of organic matter for example, in engines and incinerators or when biomass burns in forest fires..PAHs are abundant in the universe, and have recently been found to have formed possibly as early as the first couple of billion years after the Big Bang, in association with formation of new stars. PAHs are possible starting materials for syntheses of materials required by the earliest forms of life.

Naphthalene (C10H10), a fused pair of benzene rings is the simplest polycyclic aromatic hydrocarbon, It is a white crystalline solid.  It is best known as the main ingredient of traditional mothballs.
derived from the distillation of coal tar.




Examples of PAHs
Corannulene
Coronene
Ovalene









Carbon nanotubes (CNTs)


Carbon nanotubes (CNTs) are cylindrical carbon molecules with unusual properties, which are valuable for nanotechnology, electronics, optics and other fields of materials science and technology. Owing to the material's exceptional strength and stiffness, nanotubes have been constructed with length-to-diameter ratio of up to 132,000,000:1,significantly larger than for any other material.

Because of their extraordinary thermal conductivity, mechanical, and electrical properties, carbon nanotubes find applications as additives to various structural materials.

Nanotubes are formed by one-atom-thick sheets of carbon, called graphene that are rolled in a cylinder. The double bonds in the graphene sheets provide nanotubes with their unique strength.

Carbon Balls

Buckminsterfullerene (C60) has a cage-like fused-ring structure (truncated icosahedron) that resembles a soccer ball (football), made of twenty hexagons and twelve pentagons.





































The magic of Carbon

Carbon in its purest form shows itself as a diamond. Yet it also has a softer face as the backbone of life. The Carbon atoms, like women, form bonds with themselves and with many different atoms to form stable crystals and molecules. They can form gentle bonds that can stay stable in the environment found on the surface of the earth, yet can be gently broken in the right conditions.

Diamond is solid uncontaminated carbon that was produced by the carbon found in CO2 from the air millions of years before life started. Coal, also a solid form of carbon, formed millions of years after diamonds. Their source of carbon were contaminated by hydrogen, oxygen, nitrogen of decomposed life and cooked in pressures and temperatures found deep under the earth. Once the graphite curdled out from this soup, it fell in layers like snow flakes to make a 3 dimensional solid called coal, very similar to ice.

Carbon atoms, like people with 2 arms, form bonds with each other forming lines of strings, like worms. When dressed in hydrogens, materials like natural gas, fuels, oils and waxes are produced. When decorated and strengthened by oxygens, materials like sugars, alcohols, and acids are produced. Sometimes these string of carbons loop on themselves forming rings.

At greater pressures and temperatures, found deeper under the earth, these rings of carbon crystallize into flat sheets called graphite, like snow flakes. When flakes of graphite fall on each other, they fall, like snow flakes, flat but randomly aligned forming a soft slippery material where the sheets easily slip past each other.

Under increased stresses found billions of years ago deep under ground, the layers of graphite sheets were forced to align in a “staggard” alignment forming the hardest and least compressible natural made solid material known, called diamond. It was as if corrugated cardboard sheets slipping over each other suddenly locked together.

The diamond has a cubic crystal structure which contain the tetrahedron, the basic shape of the carbon atom, and the octahedron, diamond`s basic crystal form. Diamond has the greatest number of atoms per unit volume of any known substance and it is the material that conducts heat the fastest. Asbestos has a 0.08 rating while glass is 0.8, plastics are 0.2, wood is 0.1 and steel is 50, gold is 300 and diamond is 1000. Just touch glass and diamond from a freezer and the diamond immediately gets warm while the glass stays cold.

The pressures found under the earth that form diamonds are mostly vertical from top to bottom due to the weight of the rocks. In large meteor collisions and laboratories, there is sufficient horizontal pressure from the sides to align or straighten the graphite sheets from their “staggard” alignment into an “eclipsed” alignment. A hexagonal crystal structure results called lonsdaleite, where 6 atom cells grow into a straight tube called the nano-tube. This tube can be considered to be a I dimensional “string”. Lonsdaleite is much harder than diamond.

The growth of the carbon crystals by layering the graphite in a “staggard” alignment results in diamond. It is in 4 directions defining the 3 dimensional tetrahedron. The growth of the carbon crystal by layering graphite in an “eclipsed” alignment results in lonsdaleite. It grows only in one direction forming a triangular cylinder, which is just a “straightened out” octahedron.

If re-aligning the graphite sheets from “staggard” to “eclipsed” alignment results in a harder solid material as seen by diamonds and lonsdaleites, then re-aligning carbon atoms individually should result in a stronger strings and sheet of carbon. This is done by rotating the atoms from the “staggard” alignment to the “eclipsed” alignment.

When enough stress is placed on the atoms, they for rings of 5 instead of 6. When these rings join, they form spheres instead of flat sheets. It is as if the stressed out atoms curl up in a ball. The carbon balls grow like a straight string of beads called nano-beads. They can only grow on one particular configuration. That is spheres connected to each other to form beads of spheres all going in the same direction. The beads can grow only one type of branch, that is at 90° forming a sheet of beads made by 2 layers of nano-beads running at right angles to each other. They can nor grow any other way because they grow into “congestion” areas where they run out of room to grow. A second sheet of 2 layers can grow above or below a sheet, but the nano-beads find themselves “shifted” over so that they are not directly above the nano-beads below them, but right in the middle of the 2 nano-beads below. 2 nano-beads below connected to 2 nano-beads above form a cell of 4 balls in the shape of a tetrahedron. 6 of these tetrahedrons make up the 6 corners of an octahedron. It is as if these highly stressed carbon atoms finally find themselves and display their hidden soul.

If the magic of the Carbon atom is combined with the magic of science, wonderful new materials can be created. Graphene, made in laboratories is a graphite sheet that has its unpaired electrons on each of its sides bonding together to form a double bond. It forms an indefinite large sheet that has magical properties of strength. With such a super fabric, it is only the imagination that limits what this magical fabric can be made into.



Imagination
 
Hands-on building helps you to understand and remember chemical processes. Imagination greatly increases those mental powers and makes it all fun, funny and enjoyable.

The atoms C,H,O,N,Na, Cl and their heavier brothers below them on their periodic table have properties and characteristics that can be easily imagined as personalities. Atoms behave with each other, similarly the way people behave with each other. They make and break bonds, and for stable and explosive relationships with each other that could be long-term or short-term and is manipulated by many external influences.

As an example of how far imagination can go with atoms, please see the following YouTube Videos.

Chemistry
Chemistry Part 1
Part 1. Concepts of chemistry illustrated in a story.
https://www.youtube.com/watch?v=j9mKUeA4dLc&list=UU9rOAPUfZe3KEja0vvFpe_A

Chemistry Part 2
Part 2. Concepts of chemistry illustrated in a story.
https://www.youtube.com/watch?v=bCLUkm1zfL0&feature=c4-overview&list=UU9rOAPUfZe3KEja0vvFpe_A

Chemistry primer 1
https://www.youtube.com/watch?v=ySziQN8Hmzc

Chemistry primer 2
https://www.youtube.com/watch?v=0NPo8i-KgNw

For other videos on Chemistry, go to
https://simplificationofeverything.blogspot.com/

For more examples and photos of CHONXstix please refer to previous posts found in the archive list on the top of the scroll  on the right. --------->


Für mehrere Beispiele um Fotos von CHONXstix, wenden Sie sich bitte an vorherige Posts die in der Archiv-Liste oben Rechts zu finden sind. --------->


Pour plus d’exemples et de photos de CHONXstix, retrouvez les articles précédents dans la liste des archives en haut à droite. --------->

CHOXstix Kit 2 for diamonds

16 black, 16 blue, 16 red.

With kit 2 you have enough pieces to make the diamond crystal marked with different colors to show the 3 very different faces and the 3 forms found deep within the diamond - the octahedron, tetrahedron, and cube.

The easiest way to make the cubic (normal nature made) diamond crystal with CHONXstixs, is the same way as nature makes them. First make the graphite sheets, then stack them rotating the sheets so that there are no atoms that are aligned with their neighbor.

16 schwarz, 16 blau, 16 rot.

Mit Kit 2 haben Sie genug Teile, um den Diamantkristall mit verschiedenen Farben zu markieren, um die 3 sehr unterschiedlichen Gesichter und die 3 tief im Diamant gefundenen Formen - Oktaeder, Tetraeder und Würfel - zu zeigen.

Der einfachste Weg, um den kubischen (normalen Natur) Diamantkristall mit CHONXstix zu machen, ist es wie in der Natur zu machen. Stellen Sie zuerst die Graphitblätter her, dann stapeln Sie sie so, dass sie die Blätter so drehen, dass keine Atome mit ihrem Nachbarn ausgerichtet sind.


16 noir, 16 bleu, 16 rouge.

Avec le kit 2, vous avez assez de pièces pour faire le cristal de diamant marqué de couleurs différentes pour montrer les 3 visages très différents et les 3 formes trouvées profondément dans le diamant - l'octaèdre, le tétraèdre et le cube.

La façon la plus facile de faire le cristal de diamant cubique (de la nature normale) avec CHONXstix, est de faire cela de façon naturelle. Faites d'abord les feuilles de graphite, puis empilez-les en faisant tourner les feuilles de sorte qu'il n'y ait pas d'atomes alignés avec leur voisin.


Graphite Graphit Graphite

Graphite is sheets of carbon atoms where each sheet is made from interconnected hexagon cells each made from 6 atoms. Each hexagon cell is shaped like a bent folding chair on 3 legs.

Graphit ist eine Schicht aus Kohlenstoffatomen, wobei jede Schicht aus miteinander verbundenen sechseckigen Zellen besteht, die jeweils aus 6 Atomen bestehen. Jede sechseckige Zelle ist wie ein gebogener Klappstuhl auf 3 Beinen geformt.

Le graphite est des feuilles d'atomes de carbone où chaque feuille est faite à partir de cellules hexagonales interconnectées, chacune composée de 6 atomes. Chaque cellule hexagonale a la forme d'une chaise pliante pliée sur 3 pieds.



The cell extends out into a flat sheet. None of the atoms are aligned with any of their neighbor atoms.

Die Zelle erstreckt sich in ein flaches Blatt. Keines der Atome ist mit irgendeinem ihrer Nachbaratome ausgerichtet.

La cellule s'étend dans une feuille plate. Aucun des atomes n'est aligné avec l'un de leurs atomes voisins.




Diamond Diamant Diamant

Diamond is aligned and stacked graphite sheets. Once enough pressure is reached, the carbon atoms not bonded on either side of the sheets make bonds with their corresponding partners on the sheet above and below them. The sheets slipping against each other lock into alignment under heat and pressure, like corrugated carton to form diamond crystals. Different view from different angels show hexagons, triangles and squares.

Der Diamant ist ausgerichtet und in Graphitfolien gestapelt. Sobald genügend Druck erreicht ist, bilden die Kohlenstoffatome, die nicht auf beiden Seiten der Blätter gebunden sind, Bindungen mit ihren entsprechenden Partnern auf dem Blatt über und unter ihnen. Die gegeneinander verrutschenden Blätter werden unter Wärme und Druck unterbrochen, wie Wellpappe zu Diamantkristallen. Verschiedene Ansichten von verschiedenen Winkel zeigen Sechsecke, Dreiecke und Quadrate.
Le diamant est aligné et empilé des feuilles de graphite. Une fois qu'une pression suffisante est atteinte, les atomes de carbone non-liés de part et d'autre des feuilles font des liaisons avec leurs partenaires correspondants sur la feuille au-dessus et en dessous d'eux. Les feuilles glissant les unes contre les autres se verrouillent sous l'effet de la chaleur et de la pression, comme le carton ondulé pour former des cristaux de diamant. Des vues différentes de différents angles montrent des hexagones, des triangles et des carrés.

Looking at the 3 sheets marked black, red and blue,
Mit Blick auf die 3 schwarz-, rot- und blau-markierte Blätter,
En regardant les 3 feuilles marquées en noir, rouge et bleu,

View of looking straight down on the graphite sheet.
Blick auf das Graphitblatt.
Vue de regarder directement sur la feuille de graphite.


View of looking down on the graphite sheet at an angle showing the cube pattern appear.
Blick auf das Graphitblatt, das schräg das Würfelmuster erscheinen lässt.
Vue de regarder vers le bas sur la feuille de graphite à un angle montrant le motif de cube apparaissent.

The basic diamond crystal is an octahedron shown in blue, inside a tetrahedron shown in red.
Der grundlegende Diamantkristall ist ein blau dargestelltes Oktaeder, in einem rot dargestellten Tetraeder.
Le cristal de diamant de base est un octaèdre représenté en bleu, à l'intérieur d'un tétraèdre représenté en rouge.



The cube in the diamond crystal enclosing the octahedron marked in blue.
Der Würfel im Diamantkristall umschließt das blau markierte Oktaeder.
Le cube dans le cristal de diamant enfermant l'octaèdre marqué en bleu.


Adamantane Adamantan L'adamantane


Adamantane is a colorless, crystalline chemical compound with a camphor-like odor. With a formula C10H16, it is a cycloalkane and also the simplest diamondoid. Adamantane molecules consists of a hexagon cells covered by with a tetrahedral cap giving the molecule a tetrahedral shape with 4 faces and making it unique in that it is both simple, rigid and virtually stress-free. The spatial arrangement of carbon atoms in the adamantane molecule is the same as in the diamond crystal.

Adamantane derivatives have found practical application as drugs, polymeric materials, and thermally stable lubricants.

Adamantan ist eine farblose, kristalline chemische Verbindung mit einem kampferähnlichen Geruch. Mit einer Formel C10H16 ist es ein Cycloalkan und auch das einfachste der Diamantoide. Adamantan-Moleküle bestehen aus Sechseckzellen, die mit einer tetraedrischen Kappe bedeckt sind, verleihen dem Molekül eine tetraedrische Form mit vier Seiten und machen es dadurch einzigartig, dass es sowohl einfach als auch starr und praktisch spannungsfrei ist. Die räumliche Anordnung der Kohlenstoffatome im Adamantan-molekül ist die gleiche wie im Diamantkristall.

Adamantan-derivate haben eine praktische Anwendung als Arzneimittel, Polymer-Materialien und thermisch stabile Schmiermittel gefunden.


L'adamantane est un composé chimique cristallin incolore avec une odeur de camphre. Avec une formule C10H16, c'est un cycloalcane et aussi le plus simple diamantoïde. Les molécules d'adamantane consistent en des cellules hexagonales recouvertes d'une coiffe tétraédrique donnant à la molécule une forme tétraédrique à 4 faces et la rendant unique en ce qu'elle est à la fois simple, rigide et pratiquement sans stress. La disposition spatiale des atomes de carbone dans la molécule d'adamantane est la même que dans le cristal de diamant.

Les dérivés d'adamantane ont trouvé une application pratique en tant que médicaments, matériaux polymères et lubrifiants thermiquement stables.


Diamantane





Diamantane is an organic compound that is a member of the diamondoids. These are a cage hydrocarbons with structures similar to a subunit of the diamond lattice. It is a colorless solid that has been a topic of research since its discovery in oil and separation from deep natural gas condensates.
Diamondoids such as diamantane exhibit unusual properties, including low surface energies, high densities, high hydrophobicities, and resistance to oxidation.

Adamantan Derivate sind eine organische Verbindung, die ein Mitglied der Diamantoide ist. Dies ist ein Käfig Kohlenwasserstoffe mit Strukturen ähnlich einer Untereinheit des Diamantgitters. Es ist ein farbloser Feststoff, der seit seiner Entdeckung in Öl und der Abscheidung aus tiefen Erdgaskondensaten ein Forschungsthema ist.

Diamantoide wie Diamantan zeigen ungewöhnliche Eigenschaften, einschließlich niedriger Oberflächenenergien, hohe Dichten, hohe Hydrophobie und Oxidationsbeständigkeit.

Diamantane est un composé organique qui est un membre des diamantoïdes. Ce sont des hydrocarbures de cage avec des structures similaires à une sous-unité du réseau de diamant. C'est un solide incolore qui fait l'objet de recherches depuis sa découverte dans l'huile et sa séparation des condensats de gaz naturel profond.

Les diamantoïdes tels que le diamantane présentent des propriétés inhabituelles, notamment de faibles énergies de surface, des densités élevées, des hydrophobies élevées et une résistance à l'oxydation.


Nanotubes, Buckballs, Fullerenes, Cubane, Basketane, Twistane

Under extreme pressures, found in laboratories, the carbon atoms can be forced to align to be closer to their neighbors.

From the "staggard" alignment found in graphite and natural made diamonds with the cubic lattice.


Nanoröhrchen, Buckyballs, Fulleren, Kuban, Basketan, Twistan

Unter extremen Drücken, die in Laboratorien gefunden werden, können die Kohlenstoffatome gezwungen werden, sich auszurichten, um näher bei ihren Nachbarn zu sein.

Aus der "staggard" -Ausrichtung, die in Graphit und natürlichen Diamanten mit dem kubischen Gitter gefunden wird.


Nanotubes, Buckballs, Fullerènes, Cubane, Basketane, Twistane
Sous des pressions extrêmes, trouvées dans les laboratoires, les atomes de carbone peuvent être obligés de s'aligner pour se rapprocher de leurs voisins.

De l'alignement "échelonné" trouvé dans le graphite et les diamants naturels avec le réseau cubique,


to the "eclipsed" alignment found in laboratory made buckyballs.
zu der "eklipsierte" Ausrichtung gefunden in laborgefertigten Buckyballs.

à l'alignement "éclipsé" trouvé dans les buckyballs de laboratoire.

Cubane
Basketane
Twistane 
4 atoms in a tetrahedral combination are coupled face to face with another 4 atoms in a tetrahedral arrangement. The 2 tetrahedrals are "twisted" by 2 atoms connecting them. It seems to have lost its symmetry until it is rotated.

4 Atome in einer tetraedrischen Kombination sind 4 weiteren Atomen in einer tetraedrischen Anordnung gegenübergestellt. Die 2 Tetraeder sind durch 2 miteinander verbundene Atome "verdrillt". Es scheint seine Symmetrie verloren zu haben, bis es gedreht wird.

4 atomes dans une combinaison tétraédrique sont couplés face à face avec 4 autres atomes dans un arrangement tétraédrique. Les 2 tétraèdres sont "tordus" par 2 atomes les reliant. Il semble avoir perdu sa symétrie jusqu'à ce qu'il soit tourné.

And with a bit of rotation, a beautiful hidden symmetry appears.
Und mit ein bisschen Rotation erscheint eine wunderschöne versteckte Symmetrie.
Et avec un peu de rotation, une belle symétrie cachée apparaît.




As you can see from the models above, Twistane is made from a 4 carbon grouping(black), and the same 4 carbon grouping (blue) connected together back to back. 2 carbons (red) form a strip joining the top group (black) with the bottom group (blue). Modeling Twistane with CHONXstix shows that it is possible to make a new molecule if 3 strips connect the top to the bottom instead of only 1 as is the case with Twistane.

Wie Sie aus den obigen Modellen sehen können, besteht Twistan aus einer 4-Karbon-Gruppierung (schwarz) und dergleichen 4-Karbon-Gruppierung (blau), die Rücken an Rücken miteinander verbunden sind. 2 Kohlenstoffe (rot) bilden einen Streifen, der die obere Gruppe (schwarz) mit der unteren Gruppe (blau) verbindet. Die Modellierung von Twistan mit CHONXstix zeigt, dass es möglich ist, ein neues Molekül zu erzeugen, wenn 3 Streifen die Oberseite mit der Unterseite verbinden anstatt nur eine, wie es beim Twistan der Fall ist.

Comme vous pouvez le voir sur les modèles ci-dessus, Twistane est fabriqué à partir d'un groupement de 4 atomes de carbone (noir), et le même groupement 4 carbone (bleu) connectés ensemble dos à dos. 2 carbones (rouge) forment une bande rejoignant le groupe supérieur (noir) avec le groupe inférieur (bleu). La modélisation de Twistane avec CHONXstix montre qu'il est possible de fabriquer une nouvelle molécule dans le cas où 3 bandes relient du haut vers le bas au lieu de seulement 1 comme c'est le cas avec Twistane.

QUESTION: Because this new molecule shown below is more symmetric than Twistane, does that make the molecule more stable? .

FRAGE: Weil dieses neue Molekül, das unten gezeigt wird, symmetrischer als Twistan ist, wird das Molekül dabei stabiler?

QUESTION : Parce que cette nouvelle molécule présentée ci-dessous est plus symétrique que Twistane, est-ce que cela rend la molécule plus stable? 


Twistane and her fully developed sister. To fully appreciate her beauty, from all sides, you have to have her in your hands.

When ALL the atoms are eclipsed aligned, then the pressure forces the atoms closer to each other so that 5 carbon atoms form a ring that has a hint of a bowl shape.

Wenn ALLE Atome in einer Flucht angeordnet sind, zwingt der Druck die Atome näher zueinander, so dass 5 Kohlenstoffatome einen Ring bilden, der eine Andeutung einer Schalenform hat.
Lorsque TOUS les atomes sont éclipsés, la pression force les atomes à se rapprocher les uns des autres de sorte que 5 atomes de carbone forment un anneau qui a une allure de bol.



As the basic cell is extended, it is continuously bent into a sphere.
Wenn die Grundzelle verlängert wird, wird sie kontinuierlich zu einer Kugel gebogen.
Lorsque la cellule de base est étendue, elle est continuellement pliée en une sphère.



There is a cube structure within the sphere marked by red.
Es gibt eine Würfelstruktur innerhalb der Kugel, die mit rot markiert ist.
Il y a une structure de cube dans la sphère marquée par le rouge.




When the pressures needed to form spheres is reduced, the atoms seek more space for themselves and try to move away by bending and stretching. The 6 carbon atoms form hexagons in the "boat" configuration as they bend up to move away as far as they can away from their neighbor.

Wenn der Druck, der benötigt wird, um Kugeln zu bilden, reduziert wird, suchen die Atome mehr Raum für sich selbst und versuchen, sich durch Biegen und Strecken wegzubewegen. Die 6 Kohlenstoffatome bilden Hexagone in der "Boot" -Konfiguration während sie sich so weit wie möglich von ihrem Nachbarn wegbewegen.

Lorsque les pressions nécessaires pour former des sphères sont réduites, les atomes cherchent plus d'espace pour eux-mêmes et essaient de s'éloigner en se pliant et en s'étirant. Les 6 atomes de carbone forment des hexagones dans la configuration "bateau" alors qu'ils se penchent pour s'éloigner le plus loin possible de leur voisin.




By extending this cell, it turns into a tube.
Durch Ausdehnung dieser Zelle wird sie zu einer Röhre.
En prolongeant cette cellule, il se transforme en un tube.











The high pressures required to form such tubes are found in large meteorite collisions and in expensive laboratories where the graphite sheets are rotated to be"squeezed" together and be more densly packed. Below are photos of CHONXstix modeling a nano tube.

Die hohen Drücke, die erforderlich sind, um solche Röhren zu bilden, werden in großen Meteoritenkollisionen und in teuren Laboratorien gefunden, wo die Graphitblätter gedreht werden, um "zusammengequetscht" und dichter gepackt zu werden. Unten sind Fotos von CHONXstix, die eine Nanoröhre modellieren.

Les hautes pressions nécessaires pour former de tels tubes se trouvent dans de grandes collisions de météorites et dans des laboratoires coûteux où les feuilles de graphite sont tournées pour être « serrées» ensemble et être plus densément tassées. Voici des photos de CHONXstix modélisant un nanotube.






Nanothreads

Computational and theoretical studies of diamond-like carbon nanothreads suggest that they could provide an alternative to batteries by storing energy in a strained mechanical system. The team behind the research says that nanothread devices could power electronics and help with the shift towards renewable sources of energy.


Lonsdaleite Lonsdaleit Lonsdaléite

Lonsdaleite is also called hexagonal diamond because of its hexagonal lattice. In nature, it forms when meteorites containing graphite strike the Earth. The great heat and stress of the impact transforms the graphite into diamond, but retains graphite's hexagonal crystal lattice. Hexagonal diamond has also been synthesized in the laboratory by using explosives. In its pure form, it can be harder than cubic diamond. It is translucent, brownish-yellow, and its hardness is up to 58% harder than that of cubic diamond.

Lonsdaleit wird wegen seines hexagonalen Gitters auch hexagonaler Diamant genannt. In der Natur entsteht es, wenn Graphit enthaltende Meteorite die Erde treffen. Die große Hitze und Spannung des Aufpralls verwandelt das Graphit in Diamant, behält aber das hexagonale Kristallgitter des Graphits. Hexagonaler Diamant wurde auch im Labor unter Verwendung von Sprengstoffen synthetisiert. In seiner reinen Form kann es härter sein als ein kubischer Diamant. Es ist durchscheinend, bräunlich-gelb, und seine Härte ist bis zu 58% härter als die von kubischem Diamant.

Lonsdaléite est également appelé diamant hexagonal en raison de son treillis hexagonal. Dans la nature, il se forme lorsque des météorites contenant du graphite frappent la Terre. La grande chaleur et le stress de l'impact transforment le graphite en diamant, mais retiennent le réseau cristallin hexagonal du graphite. Le diamant hexagonal a également été synthétisé en laboratoire en utilisant des explosifs. Dans sa forme pure, il peut être plus dur que le diamant cubique. Il est translucide, jaune brunâtre et sa dureté est jusqu'à 58% plus dure que celle du diamant cubique.

If the pressure is sufficiently high, like those found deep inside the earth, then graphite sheets are formed. When they are stacked on top of each other under the vertical weight of the earth`s crust, they are aligned in a "staggard" alignment. This makes the basic octahedron cell structure with the cubic lattice.found in natural made diamonds.  This is the lowest energy configuration. This is shown in column "A" in the figure below.

To make Losdaleite, vertical pressure from the weight of the earths crust is not sufficient. Horizontal pressure is required to align the sheets of graphite with respect to each other so that they all have the same alignment and the carbon atoms are not staggard but directly above each other. This pressure, found in meteorite collisions and laboratories aligns the graphite sheets in the "eclipsed" alignment  with a triangular prism cell structure with a hexagonal lattice. This is the highest energy configuration with the sheets of graphite closest together. This is shown in the column "C" in the figure below.

The octahedron form of the diamond crystal can be visualized as a 3 legged stool with bent legs.

The triangular prism form of the Losdaleite crystal can be visualized as a 3 legged stool with legs going straight down.





In the figure above you can visualize how the graphite sheets are layered on top of each other. Under normal pressures found deep under the earth, the graphite sheets are layered in a "staggered" alignment with the corner of each hexagon aligned with the middle of the hexagon below and on top.

With extra pressure found in large meteorite collisions and expensive laboratories, the graphite sheets are pressed in a "straightened" alignment, with all the hexagons directly on top of each other forming Lonsdaleite, and making it harder than diamond.

Comparing Ice crystals to Lonsdaleite

Ice crystals are solid ice exhibiting hexagonal plates and columns, just like Lonsdaleite.

Unlike in Lonsdaleite where the connections between the layers of graphite are carbon to carbon bonds, the connection between the layers of ice crystals in ice are the much weaker and more flexible hydrogen bonds. The protruding protons of the hydrogens give the water molecule a polar charge with the positive side on its hydrogen face and the negative, on its oxygen back. The hydrogens with their positive polarity are attracted to the slightly negative polarized oxygens like magnets.

When motion of the water molecules is fluid like in water, these hydrogen bonds allow water to form into droplets.

When the motion is reduced, like in ice, the hydrogen bonds form a stable ice crystal in the shape of a triangle prism, the same crystal structure found in Lonsdaleite.

Can you see the 6 triangle prisms (basic ice crystals) in the figure below of an ice crystal?

Do you see how they are very similar to those of Lonsdaleite. In Lonsdaleite, the dimensions of "a" and "c" are fixed and the same. In ice, they are flexible and vary greatly.

Can you see how with this basic ice crystal, you can combine and connect them together to form snow flakes? and ice needles? 
Hexagonal.svg

Um Diamantkristalle herzustellen, müssen Sie Graphitblätter übereinanderstapeln. 

Wenn der Druck hoch genug ist, wie bei Meteoritenkollisionen und Laboratorien, können die Graphitblätter so gedreht werden, dass sie näher an ihren Nachbarschichten liegen. Wenn dies gemacht wird, bildet sich eine andere Diamantkristallstruktur, die Lonsdaleite genannt wird.


Pour fabriquer des cristaux de diamant, vous devez empiler les feuilles de graphite les unes sur les autres. 

Si la pression est suffisamment élevée, comme celles trouvées dans les collisions de météorites et les laboratoires, alors les feuilles de graphite peuvent être tournées pour être plus proches de leurs feuilles voisines. Lorsque cela est fait, une structure de cristal de diamant différente forme, appelée lonsdaléite.







Seeing the cube in the diamond crystal

To make diamond crystals, you must stack graphite sheets on top of one another. The graphite sheets are aligned with each other by having their carbon atoms aligned in the normal "staggard" alignment.

By using carbon pieces that are blue and red, the blue octahedron, and the red cube hidden within the crystal structure can be clearly seen.

Below you can see from the different angles the blue octahedron embedded in a red tetrahedron.


Man kann den Würfel im Diamantkristall sehen

Durch die Verwendung von Kohlenstoffteilen, die rot und blau sind, können das Oktaeder und der in der Kristallstruktur verborgene Würfel deutlich gesehen werden.



Il est possible de voir le cube dans le cristal de diamant 

En utilisant des pièces de carbone qui sont rouges et bleues, l'octaèdre et le cube caché dans la structure cristalline peuvent être clairement visibles.





The above picture shows the tetrahedron that forms the 4 diagonally opposing corners of a cube.

To extend the tetrahedron into the cube, balance the tetrahedron on 2 of its 4 corners on a flat surface and build out the top to how the bottom part is built.

The cube within the diamond.
  • The 8 corners of the cube are colored red.
  • The 6 corners of the octahedron within the cube are colored blue. 
Der Würfel innerhalb des Diamanten.
  • Die 8 Ecken des Würfels sind rot gefärbt.
  • Die 6 Ecken des Oktaeders innerhalb des Würfels sind blau gefärbt.
Le cube dans le diamant.
  • Les 8 coins du cube sont colorés en rouge.
  • Les 6 coins de l'octaèdre dans le cube sont colorés en bleu.


By looking from any of the 8 corners of the cube within the diamond crystal directly towards the center of the cube, you can see the cube outlined in red, the octahedron outlined in blue and the tetrahedron outlined in white.

Wenn Sie von einer der 8 Ecken des Würfels innerhalb des Diamantkristalls direkt auf die Mitte des Würfels blicken, sehen Sie den rot umrandeten Würfel, das blau umrandete Oktaeder und das weiß umrissene Tetraeder.

En regardant de l'un des 8 coins du cube dans le cristal de diamant directement vers le centre du cube, vous pouvez voir le cube en rouge, l'octaèdre en bleu et le tétraèdre en blanc.



By looking from any of the 12 edges of the cube within the diamond crystal directly towards the center of the cube, you can see the cube outlined in red, the octahedron outlined in blue and the tetrahedron outlined in white.

Wenn Sie von einem der 12 Kanten des Würfels innerhalb des Diamantkristalls direkt auf die Mitte des Würfels schauen, können Sie den rot umrandeten Würfel, das blau umrissene Oktaeder und das weiß umrahmte Tetraeder sehen.

En regardant de l'un des 12 bords du cube dans le cristal de diamant directement vers le centre du cube, vous pouvez voir le cube en rouge, l'octaèdre en bleu et le tétraèdre en blanc.




By looking from any of the 6 edges of the cube within the diamond crystal directly towards the center of the cube, you can see the cube outlined in red, the octahedron outlined in blue and the tetrahedron outlined in white.

Wenn Sie von einem der 6 Kanten des Würfels innerhalb des Diamantkristalls direkt auf die Mitte des Würfels blicken, können Sie den rot umrandeten Würfel, das blau umrissene Oktaeder und das weiß umrahmte Tetraeder sehen.

En regardant de l'un des 6 bords du cube dans le cristal de diamant directement vers le centre du cube, vous pouvez voir le cube en rouge, l'octaèdre en bleu et le tétraèdre en blanc.




By following the following rules, the colored diamond can be easily built.
Rule 1: All adjacent pieces are rotated 120° with respect to each other.
Rule 2: Each black piece connects to 3 blue pieces and 1 red piece.
Rule 3: Each blue piece connects to 4 black pieces.
Rule 4: Each red piece connects to 4 black pieces.

Indem man die folgenden Regeln befolgt, kann der farbige Diamant leicht errichtet werden.
Regel 1: Alle benachbarten Teile sind um 120 ° gegeneinander gedreht.
Regel 2: Jedes schwarze Stück verbindet sich mit 3 blauen Teilen und 1 roten Stück.
Regel 3: Jedes blaue Stück verbindet sich mit 4 schwarzen Steinen.
Regel 4: Jedes rote Stück verbindet sich mit 4 schwarzen Steinen.


En suivant les règles suivantes, le diamant coloré peut être facilement construit.
Règle 1 : Toutes les pièces adjacentes sont pivotées de 120 ° l'une par rapport à l'autre.
Règle 2 : Chaque pièce noire se connecte à 3 pièces bleues et 1 pièce rouge.
Règle 3 : Chaque pièce bleue se connecte à 4 pièces noires.
Règle 4 : Chaque pièce rouge se connecte à 4 pièces noires.







The secrets hidden in diamonds

Diamond is solid carbon, the same atom that is the fabric of life. Carbon atoms have 4 bonds positions as corners of a tetrahedron. When 2 carbon atoms approach each other to bond, they bond in a "staggard" alignment which results in  an elongated octahedron form. With additional pressure, the carbon atoms can be forced to straighten out in an eclipsed alignment resulting in an elongated triangular cylinder form.


The carbon atoms bond to each other forming lines of strings, like worms. When dressed in hydrogens, materials like natural gas, fuels, oils and waxes are produced. When decorated and strengthened by oxygens, materials like sugars, alcohols, and acids are produced.

Under pressures found deep under ground, carbon atoms from the soup of dead life buried there form rings of 6 resembling snow flakes. The hexagonal rings join to form flat sheets called graphite. When flakes of graphite fall on each other, they fall flat but randomly aligned forming a soft slippery material where the sheets easily slip past each other. Under increased stresses found billions of years ago 200km to 800km under ground, the graphite sheets were forced to align in a “staggard” alignment forming the hardest and least compressible natural made solid material known, called diamond with a cubic crystal structure containing the tetrahedron and the octahedron shapes. Diamond has the greatest number of atoms per unit volume of any known substance and it is the material that conducts heat the fastest. Asbestos has a 0.08 rating while glass is 0.8, plastics are 0.2, wood is 0.1 and steel is 50, gold is 300 and diamond is 1000. Just touch glass and diamond from a freezer and the diamond almost immediately gets warm while the glass will stay cold.

The pressures found under the earth are mostly vertical from top to bottom due to the weight of the rocks. When there is sufficient horizontal pressure from the sides to align or straighten the graphite sheets from their staggard alignment, a hexagonal crystal structure is formed where 6 atom cells grow into a straight tube called the nano-tube. These tubes grow together side by side into a triangular cylinder which is just a “straightened out” octahedron.

If re-aligning the graphite sheets from “staggard” alignment to “eclipsed” alignment results in a harder material, then re-aligning carbon atoms individually should result in a harder material. This is done by rotating the atoms so their bonds are no longer in the “staggard” alignment to each other, but rather in the “eclipsed” alignment. When enough stress is placed on the atoms, they for rings of 5 instead of 6. When these rings join, they form spheres instead of flat sheets. It is as if the stressed out atoms curl up in a ball. The carbon balls grow like a straight string of beads called nano-beads. As the beads grow in other directions, they form a cell of 4 balls in the shape of a tetrahedron. 6 of these tetrahedrons make up the 6 corners of an octahedron. It is as if these highly stressed carbon atoms finally found themselves and display their lost soul.

 
Photographs of CHONXstix













































CHONXstix Cards

Playing cards show the molecule or chemical process on the front side, and formula and text on the back side. .

For ordering, please reply to andrewvecsey@hotmail.com 

Below is taken from:

https://chemistry.tutorvista.com/inorganic-chemistry/types-of-chemical-reactions.html

with added pictures featuring CHONXstix.


Types of Chemical Reactions


Fireworks, dazzling sparkles with different colours are an example of chemical change or chemical reaction. chemical reaction involves the conversion of one substance into another substance. The involved chemical substance is known as reactants and newly formed substances are called as a product.

A chemical reaction is material changing from a beginning mass to a resulting substance. It produces new substances which have different physical and chemical properties. Such changes are usually irreversible in nature because the newly formed substances cannot easily change back into the original substances. Chemical changes can easily identify with the help of change in color, odour, energy level and physical state. Some common examples of chemical changes or chemical reactions are baking of cake, boiling of egg, burning of paper, rancidity of food etc. Any chemical change can easily represented with the help of chemical equations. The chemical equation is a symbolic representation of a chemical reaction which involves the molecular or atomic formulas of reactants and products.

The reactant molecules must be written on the left side of the equation and products will come on the right side of the equation. Both reactants and products are separated by a single headed arrow pointed towards products. On the basis of cleavage and formation of chemical bonds, chemical reactions can be classified in different types.

What is a Chemical Reaction?

Back to Top
A chemical equation represents or depicts the compounds reacting in a chemical reaction and products formed in it. A chemical equation is, therefore, a very good sequential representation of a chemical reaction.
Chemical equation is said to show the number of compounds reacting, as well as, the moles of each component reacting and moles of products formed.

Writing a Chemical Reaction

Back to Top
A chemical reaction is written with the formula of reactants on the left side, and formula of the products formed on the right. An arrow is placed in-between the reactants and the products.
Example:1In a reaction between Hydrochloric acid (HCl) and sodium hydroxide (NaOH), the chemical equation is written as:
Example:1

HCl + NaOH  H2O + NaCl

Example:2
In the reaction between nitrogen and hydrogen to form ammonia, 2 moles of N2 react with 3 moles of H2 to form 2 moles of NH3

2 N2 + 3H2  2NH3


Types of Chemical Reaction and Equations

Back to Top
In a chemical equation, the formula of the reactants and products are used. Reactants are substance(s) that undergo the chemical reaction.

  • The products are the substances produced during the chemical reaction.
  • The reactants and products are connected by an arrow ().
  • The arrow may be read as "to yield" or "to form" or "to give".
  • The reactants are placed on the left side of the arrow and the products on the right side.
  • The different reactants as well as products are connected by a plus sign (+).
Some examples of chemical reactions:

Example :1
Calcium + Hydrochloric  Calcium + Water + Carbon
Carbonate acid Chloride dioxide

CaCO3 + 2HCl  CaCl2 + H2O + CO2

Calcium carbonate combines with hydrochloric acid to form three new products.

Example : 2
NaCl + AgNO3 → AgCl + NaNO3
This reaction is a double displacement reaction, where sodium and silver ions exchange the anions between them.

Example : 3
2Na +S → Na2S
Sodium combines with sulfur to form sodium sulfide. This is a simple combination or a synthesis reaction, where two elements, sodium and sulfur combines to form sodium sulfide.

Example : 4
CaCO3 → CaO + CO2
Calcium carbonate decomposes in the above reaction to give two new products, calcium oxide and carbon dioxide.

Example : 5
CO2 +H2→ CO + H2O

5 Types of Chemical Reactions

Back to Top
The major types of chemical reactions are:


1. Combination or Synthesis Reaction

A combination or synthesis reaction is one, where a new product is synthesized by combination of two or three reactants.

Example

Hydrogen + Oxygen  Water
2H2 + O2  2H2O


2. Decomposition Reaction

Decomposition reaction is one, where one compound decomposes or breaks into two or more different products.

Example

Lead nitrate  Lead monoxide + Nitrogen dioxide + Oxygen
2Pb(NO3)2  2PbO + 4NO2 + O2


3. Displacement or Replacement Reaction

There are two types of displacement reaction.
  • Single displacement reaction.
XY + Z  XZ + Y

Example

Zn + H2SO4  ZnSO4 + H2

In the above reaction, zinc replaces hydrogen from hydrogen sulphate or sulfuric acid, to form zinc sulfate. Since only cation is exchanged here, this is a single displacement reaction.

  • Double displacement reaction

XY + AZ  XZ + AY

Example

BaCl2 + Na2SO4  BaSO4 + 2NaCl


4. Acid Base Reactions

An acid and a base combines to give salt and water. This reaction is called as a neutralization reaction or just acid-base reaction.

Example

HBr + KOH  H2O + KBr
Acid Base water salt

HBr, an acid reacts with a base, potassium hydroxide, to form water and a salt, potassium bromide. These are very important type of reactions, occurring in biological systems too.

5. Combustion Reaction

A reaction where mostly an organic compound burns in the presence of oxygen to yield mostly carbon dioxide, water, and other products, is also a type of combination reaction. Combination of any substance with oxygen results in combustion, leading to the burning of the compounds to its elementary products.

Example

C4H10 + O2  CO2 + H2O

Butane, an organic compound, burns in the presence of oxygen to give carbon dioxide and water.


For "Solving Chemical Equations" and resources go to 

https://chemistry.tutorvista.com/inorganic-chemistry/types-of-chemical-reactions.html


For more examples and photos of CHONXstix please refer to previous posts found in the archive list on the top of the scroll  on the right. --------->
For Learning English, German and French with EduCards please go to:


Do you have a question?, You can contact me via:

No comments:

Post a Comment